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Abstract. We consider the following one-dimensional discrete-time cancellative model whose
evolution is given byηn+1(x) = ηn(x + 1) + ηn(x − 1) (mod 2) with probabilityp andηn+1 = 0
with probability 1− p. Concerning critical probabilitiespc andp∗c on a survival probability, it
is known that 0.7066 pc 6 p∗c < 1 under a condition. In this paper, we give improved lower
bounds of 0.771 and 0.781 onpc andp∗c , respectively, by finding suitable supermartingales for the
model.

1. Introduction

Here, we consider the following one-dimensional discrete-time processηAn at timen starting
fromA ⊂ 2Z whose evolution satisfies:

(a) P(x ∈ ηAn+1|ηAn ) = f (|ηAn ∩ {x − 1, x + 1}|),
(b) givenηAn , the events{x ∈ ηAn+1} are independent, where

f (0) = 0 f (1) = p and f (2) = 0.

This process can be considered on a spaceS = {s = (n, x) ∈ Z+ × Z : n + x = even}, where
Z+ = {0, 1, 2, . . .}. If we let ηn(x) = 1 if x ∈ ηn and= 0 if x 6∈ ηn, then the above evolution
can be rewritten as

ηAn+1(x) =
{
ηAn (x + 1) + ηAn (x − 1) mod 2 with probabilityp

0 with probability 1− p.

We call this process thecancellative modelin this paper, since it has ‘cancellative duality’.
See pp 114–23 in Durrett (1988) for details.

Whenf (2) = q with 0 6 q 6 1, this more general class was first studied by Domany
and Kinzel (1984), so it is often called the Domany–Kinzel model. Concerning this class,
the reader is referred to Durrett (1988), pp 90–8, for example. In this setting, the directed
bond percolation (q = 2p − p2) and the directed site percolation (q = p) are special cases.
The mixed site–bond directed percolation with the probability of open siteα and with the
probability of open bondβ corresponds to the case ofp = αβ andq = α(2β − β2).

‖ Author to whom correspondence should be addressed.

0305-4470/00/020319+08$30.00 © 2000 IOP Publishing Ltd 319



320 N Konno et al

When 06 p 6 q 6 1, the process is called attractive and has the following nice property:
if ηAn ⊂ ηBn , then we can guarantee thatηAn+1 ⊂ ηBn+1 for anyn > 0 by using an appropriate
coupling. However, the cancellative model (i.e.q = 0) is non-attractive, so it does not have
the above property.

We letη0
n be the cancellative model at timen starting from the origin. Here we introduce

a survival probability for it:

θ(p) = P(η0
n 6= ∅ for anyn > 0).

The sequence of events{η0
n 6= ∅} is decreasing, soθ(p) is well defined. We introduce two

critical probabilities as follows:

pc = sup{p ∈ [0, 1] : θ(p′) = 0 for anyp′ ∈ [0, p]}
p∗c = inf {p ∈ [0, 1] : θ(p′) > 0 for anyp′ ∈ [p, 1]}.

The above definitions give

06 pc 6 p∗c 6 1

sinceθ(0) = 0 andθ(1) = 1. Note that it is not proved whether or notθ(p) is a non-
decreasing function inp, since the cancellative model under consideration is not attractive.
However, Monte Carlo simulations suggest that the above monotonicity is valid; that is, it is
conjectured thatpc = p∗c . The estimated value ispc ≈ 0.82 by Kinzel (1985) using finite-size
scaling calculations.

The present paper is devoted to the best rigorous lower bounds on the critical probabilities
pc andp∗c .

Here we review some known results on lower bounds forpc andp∗c .
It is easy to see that 0.5 6 pc by comparison with a branching processZn as follows.

Each particle gives rise toY particles in the next generation whereY is given by

P(Y = 2) = p2 P(Y = 1) = 2p(1− p) P (Y = 0) = (1− p)2.
If |ηn| = k, thenE|ηn+1| 6 E|Zn+1| = 2kp. So, ifp < 0.5, thenE(|ηn+1||ηn)/|ηn| 6 2p < 1
and the model will eventually die out. Note that this argument does not depend on attractiveness.

To obtain an improved lower bound onp∗c , define the survival probability from the finite
setA ⊂ 2Z as

σ(A) = P(ηAn 6= ∅ for anyn > 0).

By using the Harris lemma (see Harris 1976), Konno (1997) gave the following upper bound
onσ(A) for finiteA. Let

p(K)c = inf {p ∈ [0, 1] : 2p3− 2p2 + 2p − 1> 0} = 0.647 799. . . .

For anyp ∈ [p(K)c , 1], we have

σ(A) 6 1− α|A|∗ βb(A)∗ for all A ∈ Y (1.1)

where|A| is the cardinality ofA, b(A) is the number of neighbouring pairs inA,

α∗ = p4 − 2p3 + 2p2 − 2p + 1

p4
and β∗ =

(
pα∗ + 1− p

α∗

)2

.

In particular, if we takeA = {0}, then we have

θ(p) 6 2p3− 2p2 + 2p − 1

p4
(p ∈ [p(K)c , 1]) (1.2)

p(K)c = 0.647 799. . . 6 p∗c . (1.3)
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Furthermore, assuming a relation (see equation (1.8)), we can obtain an improved lower
bound onpc (notp∗c ) by making a comparison between an annihilating branching process (a
cancellative dual process for the cancellative model) and a coalescing branching process (a
coalescing dual process for directed site percolation). More detailed discussions can be found
on pp 119–20 of Durrett (1988).

Here we give the outline of this story. We letNx
n (y) be the number of paths from(x, 0)

to (y, n). DefineξAn by the directed site percolation at timen starting fromA. So we have

ξAn (x) = min{NA
n (x), 1} ηAn (x) = NA

n (x) mod 2.

The cancellative dual processη̃n for cancellative modelηn is an annihilating branching process.
A particle at sitex at timen branches into two particles put atx +1 andx−1 at timen+1 with
probabilityp, and dies with no children with probability 1−p. If two particles give birth onto
the same site, their two offspring annihilate each other and an empty site results. On the other
hand, the coalescing dual processξ̃n for directed site percolationξn is a coalescing branching
process. A particle at sitex at timen branches into two particles put atx + 1 andx− 1 at time
n + 1 with probabilityp, and dies with no children with probability 1− p. If two particles
give birth onto the same site, their two offspring coalesce into one. So the above observation
implies for anyn > 0

η̃An ⊂ ξ̃ An (1.4)

by using an appropriate coupling. By cancellative and coalescing duality equations,
respectively, we have

P(|ηAn ∩ B| is odd) = P(|η̃Bn ∩ A| is odd) (1.5)

and

P(ξAn ∩ B 6= ∅) = P(ξ̃Bn ∩ A 6= ∅). (1.6)

Let ξ1
n denote directed site percolation starting fromξ1

0 = 2Z andη1/2
n denote the cancellative

system starting from a product measure with density1
2. From (1.4)–(1.6),

P(0 ∈ ξ1
n ) = P(ξ̃0

n 6= ∅) > P(η̃0
n 6= ∅) = 2P(0 ∈ η1/2

n ). (1.7)

In the case of directed site percolation, we introduce two critical values:

pe = sup{p : ξ1
∞ = δ∅} pf = sup{p : P(ξ0

n 6= ∅ for anyn > 0) = 0}
whereξ1

∞ = limn→∞ ξ1
n andδ∅ is the pointmass on∅. The attractiveness givespe = pf . It is

known that the estimated value ofpe is 0.706 (see p 120 of Durrett 1988, for example).
If the following is valid:

pc = sup{p : η1/2
∞ = δ∅ for anyp′ ∈ [0, p]} (1.8)

then we conclude thatpc > pe (≈ 0.706) by (1.7). However, the validity of (1.8) is not proved.
On the other hand, concerning the upper bound onp∗c , Bramson and Neuhauser (1994)

proved that

p∗c < 1

by using a rescaling argument. Their basic idea is to show that the model forp close enough
to 1, when viewed on a suitable length and time scale dominates a supercritical directed site
percolation. So the existence of the phase transition is established rigorously.
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Here we summarize the last parts of known results as we mentioned before: under the
condition (1.8),

pe(≈ 0.706) 6 pc 6 p∗c < 1.

In this situation, we give the following improved lower bounds onpc andp∗c by the method
for finding suitable supermartingales for the model.

Theorem 1.1.The cancellative model dies out whenp 6 0.771. It also dies out for values of
p = 0.777and0.781. So we have0.7716 pc and0.7816 p∗c .

In the next section we will introduce the supermartingale method and give a proof of
theorem 1.1 by using it.

2. The supermartingale method and proof of theorem 1.1

This method has been described in Sudbury (1998, 1999) where it was applied to processes in
continuous time. It needs very little adaptation here. We shall begin with the simplest case.
Assume that the occupied set is finite. We shall look for values ofp for which the process
tends to contract, and thus die out.

Let the rightmost particle ofη be in positionr. Then we define a score for the process:

S(η) = r + Si

wherei denotes the state of the configuration to the left ofr and theSi are a set of values to
be determined. In this, the simplest case,i = 0 if η(r − 2) = 0 andi = 1 if η(r − 2) = 1.
(Later when we consider then positions to the left ofr, i will range over 2n possible values.)
Givenp we aim to find a choice ofSi such thatS(η) is a supermartingale in the sense that
E(S(ηn+1)) 6 S(ηn).

Without loss of generality, we takeS0 = 0, S1 = −s. To determine the change in
expectation we may sometimes need to know the whole configuration ofη. When we do not,
we assume the situation most favourable to an increase in the expectation. We consider the
possible changes at the right-hand end for four possibilities. DesignateE(S(ηn+1)) − S(ηn)
by δ(η).

Case 1. Right-hand end is. . . 0.0.1.0. . .

δ(η) 6 p[p(1− s) + (1− p)(1)] + (1− p)[p(−1)] + (1− p)2(−5). (2.1)

The first term is when both{10} pairs produce a 1 between them, makingr increase by 1 and
the configuration jump to state 1 (a 1 to the left of the rightmost 1). Then we consider the
other three possibilities for 1’s or 0’s between the two{01} pairs. Note that−5 is the smallest
possible reduction inr when two 0’s appear.

Case 2. Right-hand end is. . . 1.0.1.0. . .

δ(η) 6 p[p(1− s) + (1− p)(1)] + (1− p)p[p(−1− s) + (1− p)(−1)]

+(1− p)2[p(−3) + (1− p)(−5)]. (2.2)
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It is simple to check that this exceeds the previousδ(η) by p(1− p)(2− p(2 + s)). We
shall assume that this is positive now and check it later.δ(η) 6 0 for both cases 1 and 2 is thus
just the inequality for case 2, which is equivalent to

s > −5 + 12p − 8p2 + 2p3

2p2 − p3
. (2.3)

Case 3. Right-hand end is. . . 1.1.1.0. . .

δ(η) 6 p(1 + s) + (1− p)(−5 + s). (2.4)

Note that we have assumed the best outcome if the right-hand{10} produces a 0, that is, that
r only decreases by 5 and that the process jumps to statei = 0.

Case 4. Right-hand end is. . . 0.1.1.0. . .

δ(η) 6 p(1 + s) + (1− p)[p(−3 + s) + (1− p)(−5 + s)]. (2.5)

The right-hand side for case 4 exceeds that for case 3 byp(1− p). δ(η) 6 0 for both cases 3
and 4 is thus just the inequality for case 4 which is equivalent to

s 6 5− 8p + 2p2. (2.6)

It is simple to check that(−5 + 12p − 8p2 + 2p3)/(2p2 − p3) is increasing on(0, 1] and that
5− 8p + 2p2 is decreasing, and that both inequalities fors are satisfied forp ∈ (0, 0.711)
wheres = 0.32. Having checked that 2− p(2 + s) > 0, the assumption we made earlier, we
have shown:

Lemma 2.1. The cancellative model dies out forp 6 0.711.

Given a value ofp we may also put an upper bound on the edge-speedδ(η). From
equations (2.2) and (2.5) we may derive the following:

Lemma 2.2. Given a value ofp, the edge-speed for a cancellative model is bounded above
by either side of the equation

−5 + 12p − 8p2 + 2p3− (2p2 − p3)s = −5 + 8p − 2p2 + s

wheres is chosen to make the two sides equal.

Table 1 shows upper bounds for the edge-speed for various values ofp.

Table 1.

p Edge-speed

0.7 −0.05
0.6 −0.47
0.5 −0.95

The smallerp, the worse these bounds become as the restriction on only retreating five
spaces becomes a worse and worse approximation.

It is possible to improve on the bounds above by considering more positions to the left of
the rightmost particle than just the one we have above. If we considern positions (in intervals
of 2) then there are 2n such configurations, numberedi = 0, . . . ,2n − 1. We shall associate
with these configurations a set of values{Si} which are to be determined. The probability of
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going from statei to statej , to be designatedqij , may well depend on the configuration to
the left of then positions being considered, but we shall always assume the configuration to
the left most favourable for rightwards spread of the process. In statei we designateai to
be the expected change in the position of the rightmost particle. With these most favourable
configurations, the expected change in the score

E(S(ηn+1))− S(ηn) 6 qij (Si − Sj ) + ai. (2.7)

It can be seen that the above analysis of the casen = 1 is in this form.
Givenp, the task is therefore to find a setSi which will make the right-hand side of (2.7)

6 0 for all pairsi, j in which case the process must die out. The procedure for doing this
is explained in Sudbury (1998), even though the IPS considered there evolved in continuous
time.

Table 2 shows the maximum values ofp for whichη dies out for various values ofn.

Table 2.

n p

2 0.727
3 0.752
4 0.764
5 0.773
6 0.778
7 0.782

Up to this point our analysis has allowed us to see that for certain values ofp it is possible
to find a set{Spi } such that

∑
j qij (S

p

j −Spi )+ai is negative for alli for all possibleQ-matrices
{qij }, and thus that the process must die out. What we now need to do is to show that the values
of p in between have the same property.

First let us fix the number of sites. For each particular number of sitesn there was a
maximum value ofp, to be calledpn, for which we could show that the process died out. We
now use the set{Spni } for all the values ofp in (pn−1, pn). (These values of{Si} are usually
not optimal for all thep in this interval but may be good enough. Luckily, they usually are.)

We shall proceed frompn−1 to pn by jumps which are sufficiently small to show
that all values ofp between the jumps will have

∑
j qij (S

pn
j − S

pn
i ) + ai negative for

all possible{qij }. (Remember that the range of possibilities for the{qij } is determined
by the set of possible configurations to the left of then sites.) The maximum value of∑

j qij (S
pn
j − Spni ) + ai is to be called summax(p), the p dependency residing inq and

a. Suppose summax(p1), summax(p2) < 0 with p1 < p2. summax(p) could only be
positive in (p1, p2) if summax(p) rose to 0 and then decreased to summax(p2). At some
point in (p1, p2) the derivative of summax(p) would need to be< summax(p2)/(p2 − p1).
It is clear thatai increases withp and therefore cannot contribute to a negative derivative.
|(Spnj − Spni )| < max(Spnk ) − min(Spnk ), a bound which is fixed since theSpnk do not change
through these tests.

Suppose that in statei there arer neighbouring pairs of type 01. These are the pairs of
sites which determine the ratesqij . We shall show that|d/dp(qij )| < 1.3

√
r and thus that:

Theorem 2.3. If rmax is the maximum number of pairs of sites involved in the calculations of
qij , then

d

dp

[∑
j

qij (Sj − Si) + ai

]
> −1.3

√
rmax(max(Spnk )−min(Spnk )).
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We prove this theorem using the following lemmas.

Lemma 2.4.

d

dp

r∑
x=l

(
r

x

)
pr−x(1− p)x = − r!

(l − 1)!(r − l)!p
r−l(1− p)l−1 = rP (X = r − l)

whereX ∼ binomial(r − 1, p).

Proof.

d

dp

(
r

x

)
pr−x(1− p)x = r!

x!(r − x − 1)!
pr−x−1(1− p)x

− r!

(x − 1)!(r − x)!p
r−x(1− p)x−1.

Only one term remains after cancellation. �

Now it is well known that the maximum binomial probability for fixedr, p occurs as
close torp as possible and is asymptotically 1/

√
2πrpq. The error comes from Stirling’s

approximation and is less than exp[(r−1 + (rp)−1 + (rq)−1)/12] < e1/4 < 1.3. We have
0.6< p < 0.8, giving 1/

√
2πpq < 0.997, so that

r!

(l − 1)!(r − l)!p
r−l(1− p)l−1 = rP (X = r − l) < 1.3

√
r.

Lemma 2.5. The derivative of a binomial series with parametersr, 0.6< p < 0.8 with some
terms censored has an absolute value< 1.3

√
r, or

−1.3
√
r <

d

dp

r∑
x=0

I (x)

(
r

x

)
pr−x(1− p)x < 1.3

√
r

whereI (x) = 0 or 1.

Proof. The derivatives of the individual terms in the binomial series start all positive and then
become all negative. It is clear that the largest negative value of the derivative of the censored
series occurs when all negative and no positive terms are included; that is the series given in
lemma 2.1 wherel is chosen to be the first term with a negative derivative. We have shown
above that the size of this expression is< 1.3

√
r. The same argument for positive terms

applies as for negative terms. �

We wish to bridge the gaps between the values for which we have determined
summax(p). Theorem 2.3 shows that we need to choose the gap between trials,p2 − p1 <

| summax(p2)|/(1.3√rmax(max(Sk)−min(Sk))). Using four sites we may then proceed from
p = 0.711 to 0.75 with gaps of 0.002, then from 0.75 to 0.762 with gaps varying from 0.001
to 0.0002. Using five sites we may then proceed fromp = 0.762 to 0.771 with gaps varying
from 0.0002 to 0.000 02. With six sites our luck runs out and theSi obtained fromp6 = 0.777
do not deliver negative values of summax(p).

So it is obtained that the process dies out whenp 6 0.771. It also dies out for the values
of p = 0.777 and 0.781. (It has not proved possible to test for all values between 0.771 and
0.781.) Those complete the proof of theorem 1.1.
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